If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-20y^2+80y=0
a = -20; b = 80; c = 0;
Δ = b2-4ac
Δ = 802-4·(-20)·0
Δ = 6400
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{6400}=80$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(80)-80}{2*-20}=\frac{-160}{-40} =+4 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(80)+80}{2*-20}=\frac{0}{-40} =0 $
| 5+p/2=-5 | | 18-(-15)=3t | | (4x-1)^2=-25 | | n÷72=8 | | 3+5x=5+4x | | (4x-1)=-25 | | 2.9+10m=8.28 | | -2+36-7n=7n-9 | | (x+3)^2=3x | | 3=5x=5+4x | | 3(z+1=18 | | 6(x-2)+8(x-5)=2x-5 | | 2+9x=-205 | | 3y-8=4y-3 | | Y=-3/2(x-3)+2 | | -15-3t=18 | | 7x-8=3x=4x+8=16 | | 6e7(2e−1)−3=6+6e | | 5+2x×3x=25 | | -5a^2-3a+22=0 | | Y=-3/2(x-1)+2 | | 5h–-19h+-14=10 | | 4=100,500=x | | 1/2b-2=10 | | 6w+1=5w+4+4w | | 5×x-6=29 | | 5+2×y=70 | | 9(2x-9.5)=16.5+8.5 | | 4(5x-1)+4(x+9)=8(2x-1) | | 8=72÷n | | -b^2+8b+11=0 | | 4g–3g=2 |